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Scalability challenges
1. Dynamic meshes are adapted throughout simulation.
2. Computation generally uses nearest neighbor data.  

Grid adaption involves the entire grid.
3. LLNL’s BG/L machine will have 65K processors

Global nature of structured AMR mesh 
adaption presents scalability challenges

Data is stored on 
patches, the atomic 

units in parallel 
distribution).

Hierarchical mesh Simulation
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Grid adaption uses a recursive bisection 
algorithm to cluster tagged cells

Clustering
algorithm

Input tagged cells

Output boxes

Berger and Rigtousos, IEEE Transactions on 
Systems, Man and Cybernetics, Vol. 21, No. 5, 1991.

1. Start with bounding box covering 
whole domain

2. Form signature (ΣΣΣΣ) for box
3. If there are too many untagged cells

a. Cut at hole or inflection point to 
form sub-boxes

b. Repeat on each sub-box
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Recent implementations of clustering 
algorithm in SAMRAI use SPMD 
model
fcn(box) {

h = signature(box)
if (h is acceptable)

accept(box)
else

split(h,left,right)
fcn(left)
fcn(right)

}

1. signature() includes global
sum-reduce.

2. accept() and split() are 
local operations.

3. All processors run algorithm.

4. All processors have outputs.

fcn(box) {
h = signature(box)
if (h is acceptable)

accept(box)
else

split(h,left,right)
if (overlap(left )) fcn(left)
if (overlap(right)) fcn(right)

}

1. signature() includes sum-reduce to 
processor 0.

2. accept() and split() include 
broadcast from processor 0.

3. Only processor 0 runs full algorithm.

4. Only processor 0 has outputs, which 
must be globalized using a broadcast.

Functions in red
require 
communication 
(synchronization)

Grouped communication:Global communication:

Wissink, Hysom and Hornung, Proceedings of 17th ACM Int’l Conf. on Supercomputing, 2003.
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Clustering algorithm contains 
independent paths appropriate for task-
parallel model

Procedural
signature(1)
split(1)
signature(2)
split(2)
signature(4)
accept(4)
signature(5)
accept(5)

signature(3)
accept(3)

O
rder of execution

Task-oriented
signature(1)
split(1)

signature(2)
split(2)

signature(3)
accept(3)

signature(4) signature(5)
accept(4) accept(5)

Independent

Dendogram

1
2 3

4 5

D
ependent

1. Impose specific ordering.
2. Create unneeded 

synchronizations.

1. Each dendogram node is a task.
2. Do independent tasks concurrently.
3. Overlap communications and 

computations in multiple tasks.

Unneeded sync.

Unneeded sync.
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Task-parallel implementation follows 
natural tasks in clustering algorithm

task(node) {
…
split(h,left,right)
add_to_task_mgr(left,right)
sleep_until_children_finish()
add_to_task_mgr(parent_node)

}

fcn(box) {
…
split(h,left,right)
if (overlap(left))

fcn(left)
if (overlap(right))

fcn(right)
}
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Task-oriented, newSequential, old

Replace with

� Replace sequential operations on left and right children with insertion into task 
manager (next slide).

� Each instance of task() is associated with one node of the dendogram.  It is 
not recursive.

� Communication and sleeping steps are “interruptible” so waiting tasks can be 
set aside to work on tasks that can make immediate progress.

� Tasks are initiated by insertion into task manager (not directly called).
� Task-parallel algorithm driven by task manager (next slide).

Interruptible 
communication wait

Interruptible non-
communication wait
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Task manager selects active tasks to 
minimize processor wait times

…
Request n
Request m
Request l

MPI requests

…
Task r
Task q
Task p

Waiting tasks

…
Task j
Task i

Queued tasks

Tasks that can make immediate 
progress without waiting (new 

and awoken task)..
Pending communications 

(MPI_Request objects from 
non-blocking MPI calls).

Tasks awaiting communication 
from signature(), 

split(), accept(), …

Task Manager
maintains 3 arrays

Task Manager Algorithm (user-space thread controller):
1. Start/continue all tasks in task queue (and empty the queue)
2. Wait for some pending communication requests to complete
3. Continue waiting tasks for completed communications
4. Repeat until no more task or pending request exists.
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Two optimizations affect new algorithm

Hand-coded collective communications along edges of a tree

Multi-owner option – select owner from participating processor group
� Reduces traffic congestion around single-owner
� Improves load balance
� Requires all-gather instead of broadcast for globalizing output 

(drawback).
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Direct with N=10 processors, 
O(N) complexity

O

P P
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Tree with N=10 processors,
O(log N) complexity

(Tree of 
processors, not to 
be confused with 

dendogram!)

O

P
Owner
Participant

� Avoid expensive formation of MPI communicators.
� Supports non-blocking collective communications.



9

New algorithm improves clustering 
performance and scalability

IBM: 16 processors/node

• Adapt four-level mesh around moving sinusoidal wave front.  
• Fix problem-size.  Increase processor count.
• Synchronize processors before clustering.
• Globalize (put all outputs on all processors).
• Time initial mesh generation and five global regrids.
• Collect max times across all processors.

Tagged cells

Linux cluster: 2 processors/node

Time to Cluster and Globalize Output on IBM
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Time to Cluster and Globalize Output on Linux
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Clustering scales better than output 
globalizing

Asynchronous Component Costs on IBM
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Summary

� This work aims to reduce the regridding cost of SAMR on large-scale parallel 

computers.

� We parallelized the clustering algorithm by wrapping the SPMD 
implementation an asynchronous, interruptible tasks.  A task manager selects 
active tasks to minimize communication wait times.

� Task-parallel implementation significantly improves scaling trend over the 
synchronous implementations

— Scaling trend is much more favorable

— Performance with low processor-count is comparable to synchronous algorithm, 

but is machine dependent.

— Different variations of the implementation works better with different platforms 

(and underlying MPI implementations). 

� Clustering cost scales much better than output globalizing cost.


